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Executive Summary 
Defense system complexity, combined with limited and/or costly resources, presents a challenge to 

obtaining a meaningful system-level reliability analysis. Configuration changes throughout development 

and limited operational test durations conspire to limit reliability estimates and widen confidence 

intervals using traditional methods, reducing information to inform decisions. Additionally, leadership 

will require interim and recurring reliability estimates before the full system is ever operated, a 

challenge given the cited issues. The Bayesian approach is a well-known method to provide a way to 

address multiple data sources, changing configurations, and the need for accurate, recurring estimates 

of system reliability. Bayesian methods are always an option for calculating reliability estimates, but 

they are especially useful when data collection is limited. Bayesian inference more completely informs 

the true variability of the reliability estimate at all levels (including the full system) even before the 

system has been constructed and tested. The use of modeling, simulation, and hardware-in-the-loop 

testing creates multiple data sources captured at different times and venues. Frequentist methods do 

not provide a suitable way to combine data from these various tests or configurations in a 

mathematically rigorous and meaningful way. This paper discusses the implementation of a Bayesian 

reliability estimation process for requirements of a complex system expressed as a proportion (between 

0 and 1).  

 

Keywords: Bayes, reliability, test planning, likelihood, prior, posterior, credible interval, STAT 

Introduction and Motivation 
Defense system complexity combined with limited and/or costly resources presents a challenge to 

obtaining a meaningful system-level reliability analysis. Developmental testing (DT) will generate a 

significant amount of component and sub-system information, but these are likely to undergo 

configuration changes to correct deficiencies along the way. Additionally, leadership will require 

recurring reliability estimates even before the full system is operated. As a part of the Scientific Test and 

Analysis Techniques (STAT) toolset, the Bayesian method provides a way to address multiple data 

sources, changing configurations, and the need for accurate, recurring estimates of system reliability. 

 

Bayesian methods are always an option for calculating reliability estimates, but they are especially 

useful when data collection is limited. Frequentist reliability estimation methods rely on point estimates 

of individual components to populate a model. However, before the complete system is actually built, 

only a reliability point estimate is calculated along with confidence bounds. These confidence bounds 

rely on large sample sizes to obtain an estimate that is of practical use (i.e., the width of the interval is 

sufficiently small), which may be an issue early in testing. Bayesian inference more completely informs 

the true variability of the reliability estimate at all levels (including the full system) even before the 

system has been constructed and tested. 
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The sequential nature of DT likely includes changing configurations and testing of components and sub-

systems long before the final system is delivered. The use of modeling, simulation, and hardware-in-the-

loop testing creates multiple data sources captured at different times and venues. Frequentist methods 

do not provide a suitable way to combine data from these various tests or configurations in a 

mathematically rigorous and meaningful way, as frequentist analysis assumes testing has been done 

under the same conditions. 

 

Finally, operational testing (OT) typically generates a relatively small volume of reliability data, 

compared to DT, which negatively impacts the calculation of a meaningful estimate. The resulting 

confidence bounds may be ambiguously wide and uninformative, even when the point estimate meets 

the requirement. 

 

This paper discusses the implementation of a Bayesian reliability estimation process for requirements of 

a complex system expressed as a proportion (between 0 and 1).  

Bayesian Method Overview 
Bayesian inference is a method of statistical inference that combines previous testing and physical 

theory with limited additional test data (Meeker and Escobar, 1998). Bayesian analysis mathematically 

combines priors and statistical distributions of expected performance (i.e., our belief on the 

performance before the data is observed) with new test results (likelihood) to generate an output 

distribution (posterior) of the performance parameter. The posterior distribution represents updated 

knowledge from additional testing about the parameter. Error! Reference source not found. shows the 

components required to perform Bayesian analysis.  

 

 

 
Figure 1: Bayesian Analysis (Adapted from Meeker and Escobar, 1998) 
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Implementation of a Bayesian Approach 
Parameters in a frequentist model are assumed to be unknown constants (i.e., they’re fixed, unknown 

values). Bayesian inference assumes the parameters in a model are also unknown, but are random 

variables and follow a distribution. The method is based on conditional probability where the 

parameters in a model are treated as random variables. The goal of Bayesian inference is to estimate 

the unknown parameter(s) using observed data. The major benefit is that Bayesian inference outputs a 

distribution of the parameter estimate instead of merely a point estimate. In addition, a Bayesian 

credibility interval provides the estimated range of the parameter value. This is in contrast to a 

frequentist confidence interval which simply computes bounds on the point estimate of the parameter. 

 

Equation 1 shows Bayes’ conditional probability equation. 

 

𝑃(𝜃|𝐷) =
𝑃(𝐷|𝜃)𝑃(𝜃)

𝑃(𝐷)
 (1) 

 

 P(D│θ) (Likelihood): Function of the data set (D) given a parameter () 

 P(θ) (Prior): Probability distribution of the parameter () (represents our belief on the parameter 

before the dataset D is observed) 

 P(θ|D) (Posterior): Probability distribution of the parameter () given a data set (D)  

 P(D) (Evidence): Probability distribution of the data set (D). This is a normalizing constant that 

ensures the cumulative posterior distribution sums to 1. 

 

We must specify the population distribution (which informs the likelihood function 𝑃(𝐷|𝜃)) and prior 

distribution 𝑃(𝜃). Simple systems (single components) may employ the properties of the chosen 

distributions to determine a closed-form solution of 𝑃(𝜃|𝐷) (called conjugate priors), whereas more 

realistic and complex systems will require Markov Chain Monte Carlo (MCMC) software methods to 

estimate the posterior distribution 𝑃(𝜃|𝐷). The example in the next section will cover this specifically, 

and software code is provided in the appendices or can be obtained by emailing COE@AFIT.edu. 

Likelihood 
The likelihood function is the joint probability distribution of the collected sample; i.e., the probability of 

the observed data, given the parameters. The parameters are the only unknowns in the likelihood. The 

likelihood function is determined by specifying a population probability distribution. This distribution 

should be based on system knowledge while leveraging the features of common statistical distributions. 

The population distribution should resemble the nature of the data being collected, for example, 

pass/fail events or failure times, two common reliability metrics. Modeling failure times using the 

Weibull distribution is a common application. 

Prior 
Information for a prior can come from two primary sources: 1) past data or 2) expert opinion. Past test 

data may come from (in preferential order): current system test data, previous test data from a similar 



STAT COE-Report-05-2019 

 

 
Page 5 

 
  

system, previous component test data, current system simulation, and analysis. Analysis of past data can 

provide an appropriate distribution and reasonable values of the parameters. When test data is 

available, we can use defined specifications to determine the number of units that passed or failed in 

the test. For example, any unit that was within specifications would be a “pass”, and any outside of the 

specifications would be classified a “fail.” If no test data is available, but there are defined specifications 

for the component, we could tie a distribution’s quantiles to the specification values. Similarly, physics 

or scientific principles may provide reasonably assumed values of the prior distribution. Historical data 

can be used to estimate the parameters in the prior distribution using methods such as maximum 

likelihood.  

Method Applicability 
Bayesian analysis does not apply to or replace standard reliability tasks like Failure Modes Effects and 

Criticality Analysis (FMECA) and root cause analysis. Bayesian analysis can be, and should be, used to 

estimate subsystem or component reliability as well as total system reliability. The method contained in 

the later example employs the system reliability block diagram (typically provided via the system 

engineering and/or reliability team). The program team (typically a STAT or Reliability working group) 

will need to determine the lowest level of component tracking desired for program use.  

 

The overall process entails the use of initial prior information (expectations) regarding the components 

and the gathering of actual reliability data through testing. As testing proceeds, the last posterior 

becomes the prior for the next step. This process naturally includes any configuration changes into the 

posterior estimates. The program office and contractor must come to an agreement on how and which 

test article configurations will be utilized as priors in the reliability assessment. In addition to a final 

estimate of system reliability, interim estimates at all levels of the system, which are not readily 

available using a frequentist approach, can be generated throughout the test process.  

Practical System Reliability Example  
Components can be assessed for reliability as an individual unit, often using traditional reliability 

analysis methods. To quantify the reliability of a system, we can leverage the system structure, often 

depicted in a reliability block diagram (RBD). RBDs are part of the systems engineering process and are 

typically delivered by the contractor. Figure 2 shows two examples of simple systems. Figure 2a shows a 

three-component system where the components are in series. If any one of these components fails, 

then the whole system fails. Figure 2b shows a three-component system where the components are in 

parallel. The system fails only if all of the components fail.  
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Figure 2: Reliability block diagram for a) a series system b) a parallel system 

 

Assuming the components are independent, we can estimate the system reliability using the following 

formulas for a system with 𝑘 compononents in series or parallel, respectively:  

𝑅𝑆(𝑡) = 𝑅1(𝑡)𝑅2(𝑡) … 𝑅𝑘(𝑡) 

𝑅𝑆(𝑡) = 1 − (1 − 𝑅1(𝑡))(1 − 𝑅2(𝑡)) … (1 − 𝑅𝑘(𝑡)) 

 

These formulas can be applied for complex systems by breaking down a system into its sub-systems and 

components. They provide a single estimate for reliability. By utilizing the Bayesian approach and the 

structure of the system, we can estimate the distribution of the system reliability. The information 

necessary for this approach is to: 1) determine the sources of information for the component reliability 

assessment; 2) determine the component prior distributions; 3) collect component test data; and 4) 

collect system test data.  

 

In the following subsections, we demonstrate this process for a notional three-component series system 

as shown in Figure 2a.  

Determine Sources of Information for Components 
Reliability block diagrams for a complex system can be as detailed as desired. The level of detail will 

depend on the amount of data available at each level of the system.  

Choice of Population Distribution (Likelihood) 

The population distribution should reflect the nature of the response variable. Failure times are often 

well modeled with exponential, Weibull, or Gamma distributions. Binary (i.e., Pass/Fail) outcomes can 

be modeled using a Bernoulli/binomial distribution. Count data may be modeled with the Poisson 

distribution. Continuous data restricted between 0 and 1 can employ a Beta distribution. Choose a 

distribution that make sense for the specific data. For example, if the data must be nonnegative (e.g., 

failure times), choose a distribution that is nonnegative. The parameters associated with the probability 

distribution used are further defined by the priors.    
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Choice of Prior 

The prior defines the distribution for the likelihood parameters. For example, the population distribution 

may be modelled using the binomial distribution (described in the previous sub-section) which has 

parameters n and p. Parameter n (sample size) is comprised of whole numbers and could be modeled 

using a Poisson prior. Parameter p is a proportion (between 0.0 and 1.0) and could employ a Beta prior. 

For the cases where the parameter varies from 0 to infinity, the gamma distribution with shape > 2 and 

the lognormal distribution are feasible choices. This is the significant difference with a Bayesian method; 

the priors are not fixed values but distributions themselves. 

 

Once the level of detail for the system has been agreed upon, the test team must then agree on what 

sources of data will be used to determine the prior distributions for the components. This information 

will be used as the sources for the prior distribution of each component. Potential sources of data in 

preferential order (most to least informative) to inform the prior distributions are:  

 Actual component reliability testing 

 Actual component qualification testing 

 Similar system performance 

 Specification information 

 Subject matter expert input 

 

Expert opinion can be used when no other prior test data is available. Statisticians typically develop prior 

information from experts by eliciting the general shape of the parameter distribution of interest 

(symmetrical, skewed, etc.) and typical values for given quantiles; e.g., 80% of the data resides between 

X and Y values. This information can be used to calculate parameters for a specific distribution.  

 

If there is no prior information available from either past data or expert opinion, a vague prior, an 

approximately constant prior over the range of the parameter, can be used. When using expert 

elicitation, “wishful thinking” must not be used to determine the priors; vague priors are preferred when 

there is limited prior information (Meeker and Escobar, 1998). 

 

Since the top-level reliability metric (in this paper’s example) is expressed as a proportion, all reliability 

data in the Bayesian model must also be expressed as a proportion. However, since the prior data may 

come from a continuous measure (e.g., power, volts, time) we must transform them into a probability 

distribution that exists between 0 and 1. If there is a specification associated with the component, 

binary data can be generated based on how often the component met specifications. For example, if the 

component response voltage must remain below X volts to pass the test and 90% of the data is below X 

volts, we could determine the particular distribution whose 90th percentile is at X volts. This topic will 

not be discussed further here but can be accomplished in several ways and is described in Anderson-

Cook et al. (2007). Anderson Cook et al. (2007) also describes how to combine information from multiple 

experts into one prior. The method for mapping data between domains should follow established 

methods and be accomplished through mutual discussion and agreement between the government 
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program office and contractor. Sensitivity analysis should be performed to assess the reliance of the 

reliability estimates on the choice of the prior assumptions. The final Bayesian model should be fairly 

robust to the choice of priors. 

Determination of Example Component Priors 
In our notional example, component 1 is a newer component and does not have previous test data 

available, so the test team will rely on subject matter expertise to provide information on the prior for 

this component. Component 2 has test data available for analysis, and the team will use this information 

to determine the prior. Component 3 does not have test data available, but it is a replacement for the 

legacy component, which does have reliability information available. This similar component will be 

used to determine the prior for component 3.  

 

We assume each component reliability (population distribution) can be characterized by a binary 

response during component testing (i.e., the component passes or fails). Each component, therefore, 

has a reliability defined by the binomial distribution: 

 

𝑅𝑖(𝑡) = (
𝑛𝑖

𝑐𝑖
) 𝑝𝑖

𝑐𝑖(1 − 𝑝𝑖)𝑛𝑖−𝑐𝑖    

 

where 𝑛𝑖 is the sample size for component 𝑖 testing; 𝑐𝑖 is the number of passes observed in component 𝑖 

testing; 𝑝𝑖  is the reliability for the 𝑖th component. Each component has an associated prior for the 𝑝𝑖. 

The 𝑝𝑖  are proportions and range from 0 to 1. The parameter n is considered a fixed, known value in this 

example. The only unknown prior is the proportion 𝑝𝑖.  

 

For the three-component system, therefore, there are three priors to determine. Using the sources of 

information agreed upon by the test team, the priors 𝑝𝑖  for each component can be defined. The goal is 

to describe the reliability of the component as a distribution instead of a single value. Note this 

difference between the likelihood function, which reflects the nature of the reliability data itself, and 

the prior, which serves to describe the expected distribution of the underlying parameters. 

 

For component 1, there was no test data available; however, the system experts believe that the 

reliability of this component is on average 0.9 with a standard deviation of 0.1. This can be translated to 

a beta distribution with parameters 7.2 and 0.8. For component 2, past data provided an estimate of the 

distribution for the reliability. The parameters of the beta distribution were estimated using maximum 

likelihood of the observed test data. For component 3, the legacy system had an average reliability of 

0.85 with a standard deviation of 0.1. This translates to a beta distribution with parameters 10 and 1.76. 

Figure 3 shows the prior distributions for each component in this example. Compared to components 1 

and 2, component 3 has worse reliability.  
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Figure 3: Prior Distributions for components in three-component system 

With the system structure and priors identified, we can generate a pre-test reliability prediction of the 

system. 

Collect Component Test Data 
As component/sub-system data is collected, posterior distributions for the components are estimated. 

These posteriors can then be used as new priors of the components. This will generate new component 

posteriors after any correction of deficiencies/configuration changes during component development. 

Using new component posteriors as priors for the next phase of testing correctly incorporates the 

information due to a configuration change into the following posterior analysis. This method also allows 

you to better inform the priors of the components with actual test data of the components. This is the 

beauty of Bayesian inference – as more data is collected, the data will outweigh the effect of the prior in 

the analysis. Finally, this approach supports the test-analyze-fix-test approach to DT. We would continue 

to iterate, updating the priors at the component level as component-level test data is executed.  

As the component data is collected, we feed this data into the Bayesian reliability model. Using this 

information, we can estimate the system reliability before system-level testing has even occurred.  

 

In the notional example, Figure 4 shows the prior and posterior distribution for the system reliability. 

This model incorporates component testing where component 1 had 10 tests with 2 failures, component 

2 had 12 tests with 1 failure, and component 3 had 6 tests with 1 failure. Table 1 shows the mean, 

standard deviation, and credible interval of system reliability without component test data (prior) and 

with the test data (posterior).  
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Figure 4: Posterior distribution with no system test data 

Table 1: Prior and Posterior Summary Metrics (No System Test Data) 

 
Prior Posterior 

Mean 0.714 0.660 

SD 0.127 0.100 

0.025 quantile 0.435 0.449 

0.975 quantile 0.920 0.837 

 

With the incorporated component data, the system reliability estimate drops from 0.71 to 0.66. The 

posterior distribution also provides a 95% credibility interval of [0.45, 0.84]. This is a very wide interval; 

however, no system-level data has been incorporated into the model yet. 

Collect System-Level Test Data 
As testing of the system continues, system test data can be added into the reliability model. We use the 

component posteriors to feed into a model with system-level test data. In this example, 8 system-level 

tests are executed with 1 failure. Figure 5 shows the prior and posterior distribution of the system 

reliability incorporating the 8 system-level tests. Table 2 shows the summary metrics for the prior and 

posterior distributions.  
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Figure 5: Prior and posterior distribution of notional system with system-level data 

Table 2: Prior and Posterior Summary Metrics (With System Test Data) 

 
Prior Posterior 

Mean 0.714 0.717 

SD 0.127 0.082 

0.025 quantile 0.435 0.543 

0.975 quantile 0.920 0.861 

 

The system reliability estimate is now 0.72 with a 95% credible interval of [0.54, 0.86], as shown in Table 

2. Note that incorporating the system-level data in particular provides a smaller estimate for the 

variance of the system reliability (the tails of the posterior distribution are narrower than the tails of the 

prior distribution). Similar to before, system-level test data will be counted only for the current phase of 

testing, since previous flight test data will have been incorporated into the posteriors.  

Suppose now 24 system-level tests are completed with 1 failure. Figure 6 shows the prior and posterior 

distribution of the notional system. Note how the posterior distribution reflects a much higher reliability 

of the system, with a tighter distribution of the reliability. As more data is collected, the data will 

overwhelm the influence of the prior on the estimate for the system reliability.  
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Figure 6: Prior and posterior distribution of notional system with 24 system-level tests 

Required Planning Actions 
In short, executing a Bayesian reliability estimation process requires a reliability block diagram (RBD), 

priors, test data, and code to execute the Markov Chain Monte Carlo (MCMC) simulations.  

 

The team must develop an RBD and determine to what level reliability data will be tracked. Two critical 

questions are  

 How far down into the system (level of detail) can we obtain component reliability information? 

 How far down do we want to track it?  

 

The RBD must be sufficiently detailed to accommodate the depth of reliability information that is 

desired to be tracked. Conversely, the RBD may be detailed beyond the interest of the program. In 

either case, the team will need to source “prior” information and test data to the level that is both 

acceptable to the program and compatible with the RBD. 

 

The RBD also serves to inform the expected data collection events. If data is needed, then an event 

should be planned to collect it. The required data sources for “priors” need to be identified and 

discussed so they realistically inform the data. In cases where the prior or test data is not expressed as a 

proportion (e.g., a failure time or stress value), the team needs to identify and agree on a method to 

convert these data into probability distributions that lie between 0 and 1. Finally, the team needs to 

develop a formal plan to manage the RBD, reliability code/model, files, data, and output. 
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Applicability to Reliability Growth 
Recurring reliability estimates can be recorded and plotted to track reliability growth over time. Initially, 

the estimates will be based on component reliability posteriors derived independently and combined 

mathematically. As testing progresses, the reliability estimates will become more realistic, as they will 

reflect the larger subsystems, until the final reliability estimates contain full system test results. The 

recurring process is   

 Update the reliability estimate after any testing completes or priors are updated 

 Record the most likely (ML) reliability value (peak) and lower bound (LB) values 

 Track growth of ML and LB values throughout testing to plot trends 

Data Use for Operational Testing 
The ability to continually update the reliability estimate throughout testing is useful to inform trends 

and provide rationale to transition to operational testing (OT). In particular, the final set of DT 

component (or system) posteriors can be provided as priors to be used with OT data. Also, since no 

configuration changes are expected during OT, the full set of OT data can be used with the DT-generated 

component priors to generate a more complete and informed operational reliability estimate. Typically, 

OT would draw conclusions based on OT data alone. This can be an issue when OT is limited in time or 

scope, generating relatively small data sets with potentially wide (uninformative or vague) confidence 

bounds when using a frequentist approach. The application of DT priors and OT data more accurately 

reveals true system reliability expectations and should be more refined (tighter and more specific) in its 

estimate of the credibility intervals. 

Conclusion 
Frequentist reliability methods are useful when we expect a large number of tests. In DOD testing, 

system-level testing is often limited, leaving limited analysis if we rely on frequentist methods. Bayesian 

inference can be utilized, particularly with small sample sizes, by utilizing component level data and the 

system-level structure. Code to implement the example described in this paper is available in the 

appendix. As the system complexity increases, we recommend consulting with a STAT Expert to ensure 

the analysis is valid. For more information on the code and methodology, consult the STAT COE at 

COE@afit.edu. 

  



STAT COE-Report-05-2019 

 

 
Page 14 

 
  

References 
Anderson-Cook, C. M., Graves, T., Hamada, M., Hengartner, N., Johnson, V. E., Reese, C. S., & Wilson, A. 

G. “Bayesian stockpile reliability methodology for complex systems.” Military Operations Research, vol. 

12, no. 2, 2007, pp. 25-37.  

 

Anderson-Cook, C. M., Graves, T., Hengartner, N., Klamann, R., Wiedlea, A.C.K., Wilson, A. G., Anderson, 

G., Lopez, G. (2008), “Reliability Modeling using Both System Test and Quality Assurance Data.” Military 

Operations Research, vol. 13, no. 3, 2008. pp. 5-18. 

 

Meeker, W. Q., & Escobar, L. A. Statistical methods for reliability data. John Wiley & Sons, Inc., 1998. 

  



STAT COE-Report-05-2019 

 

 
Page 15 

 
  

Appendix A: Creating Temp Input 
You can consolidate many of the key concepts introduced in this best practice to include in the reliability 

section of the TEMP for your program. The specifics you choose to include and level of detail will depend 

on how mature your system is in the acquisition cycle. You will want to ensure you include information 

on the reliability block diagram of the system and the data sources to be used to generate the priors. 

The proper execution of this effort requires a significant amount of coordination to ensure the data is 

continually managed and properly analyzed. Early in the acquisition cycle the description of these 

processes may be of high significance to TEMP reviewers looking to understand the program’s plans and 

expectations. This information can be conveyed in a table similar to Table 3. 

Table 3: Example table of data sources for priors 

Subsystem Component Data Source 

Subsystem 1 A Ground test 

 B Component XYZ test data 

 C Expert opinion 

 D Model and simulation 

Subsystem 2 A  

 B  

 C  

 D  

 

As information on the specifics of the design and data sources become available, the TEMP and related 

planning documents can be updated to reflect the new information. The STAT COE can support these 

efforts and can be contacted at COE@afit.edu.  
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Appendix B: R Code 
To execute the MCMC, you must install both R and jags (just another gibbs sampler). R calls jags to 

perform the MCMC runs.  

Jags model: SystemReliabilitySeries3Comps.txt 

model{   

# feed in component 1 data into likelihood 

for(i in 1:n1){ 

     c1[i] ~dbern(p1) 

  }  

# feed in component 2 data into likelihood  

  for(i in 1:n2){ 

     c2[i] ~dbern(p2) 

  } 

# feed in component 3 data into likelihood 

  for(i in 1:n3){ 

     c3[i] ~dbern(p3) 

  } 

# feed in system-level data into likelihood 

    for(i in 1:nS){ 

     cS[i] ~dbern(pS) 

  } 

# Define prior distributions for the three components 

  p1 ~ dbeta(7.2,0.8) 

  p2 ~ dbeta(22.864,1.083) 

  p3 ~ dbeta(9.988,1.76) 

  #p3 ~ dunif(0,1) #Example 3 (vague prior for one component) 

# Define system structure; this example is a 3 component series system, so reliabilities multiply. Can 

change this formula depending on the form of the system and leveraging RBD.    

pS = p1*p2*p3 

} 

 

R code:  

# Observed Data for component & System Tests (if there are system tests) 

C1 = c(rep(1,20),rep(0,1)) # number successes and failures for Component 1 

C2 = c(rep(1,15),rep(0,1)) # number successes for component 2 

C3 = c(rep(1,25),rep(0,1)) # number for component 3 

CS = c(rep(1,0),rep(0,0)) # number for system tests [Example 1; no system test data] 

CS = c(rep(1,7),rep(0,1)) # Example 2 (have system test data; 8 tests with 1 failure) 
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CS = c(rep(1,23),rep(0,1)) # Example 3 (have system test data; 24 tests with 1 failure) 

 

#Define sample sizes for component data and system test data 

n1 = length(C1)  

n2 = length(C2) 

n3 = length(C3) 

nS = length(CS) 

 

#Sets initial values for MCMC 

inits <- list(p1 = 0.5, p2 = 0.5, p3 = 0.5) 

 

#Store data needed for JAGS in list 

#jags.dat <- list(c1 = C1, c2 = C2, c3 = C3, n1 = n1, n2 = n2, n3 = n3) 

jags.dat <- list(c1 = C1, c2 = C2, c3 = C3, cS = CS, n1 = n1, n2 = n2, n3 = n3, nS = nS) 

 

#Generate JAGS model 

jags <- jags.model('SystemReliabilitySeries3Comps.txt', inits = inits, n.chains = 1, data = jags.dat) 

 

#Update starts sampler at a value n.iter into the chain (burn-in) 

update(jags,n.iter = 5000) 

 

#Obtain draws from the MCMC algorithm 

sim.draws <- coda.samples(jags,thin = 5, variable.names = c('p1', 'p2', 'p3','pS'), n.iter = 50000) 

 

#Graphical, numerical summaries (mean, median, 0.025 & 0.975 quantiles) and estimate of joint 

posterior (p1, p2, p3) 

 

summary(sim.draws) 

 

#Compare prior vs Posterior of Component Reliability [If no test data, curves should be very similar] 

plot(density(sim.draws[[1]][,1]), ylim = c(0,16), xlim = c(0.5, 1), lwd = 2, main = "Component Reliability 

Posterior vs Prior", 

     xlab = "p (probability parameter)", cex.axis = 1.5, cex = 1.5, cex.lab=1.5) 

lines(density(p1Prior),lty=2, lwd = 2) 

legend("topleft",lty = c(1,2), lwd = c(2,2), col = c("black","black"), c("Comp 1 Post","Comp 1 Prior")) 

lines(density(sim.draws[[1]][,2]),  ylim = c(0,16), lwd = 2, col = "red") 

lines(density(p2Prior),lty=2, col = "red", lwd = 2) 

legend("topleft", lty = rep(c(1,2),2), lwd = rep(2,4), col = c("black", "black", "red", "red"), 

      c("Comp 1 Post", "Comp 1 Prior", "Comp 2 Post", "Comp 2 Prior")) 

lines(density(sim.draws[[1]][,3]), ylim = c(0,6), col = "blue", lwd = 2) 

lines(density(p3Prior),lty=2, lwd = 2, col = "blue") 
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legend("topleft", lty = rep(c(1,2),3), lwd = rep(2,6), col = c("black", "black", "red", "red", 'blue', "blue"), 

       c("Comp 1 Post", "Comp 1 Prior", "Comp 2 Post", "Comp 2 Prior", "Comp 3 Post", "Comp 3 Prior")) 

 

#Compare prior vs Posterior of System Reliability 

RSPost = sim.draws[[1]][,1]*sim.draws[[1]][,2]*sim.draws[[1]][,3] 

RSPrior = p1Prior*p2Prior*p3Prior 

 

plot(density(sim.draws[[1]][,4]), ylim = c(0,8), xlim = c(0, 1), lwd = 2, lty = 1,  

     main = "System Reliability (with System Test Data)", xlab = "System Reliability", cex.axis = 1.5,  

     cex.lab = 1.5) 

lines(density(RSPrior),lty=2, lwd = 2) 

legend("topright", lty = c(1,2), lwd = c(2,2), c("Posterior", "Prior")) 

#lines(density(RSPost), col="red") #A spot check (Should be the same line as that in first line 

 

#Draws from posterior to get empirical distribution of system reliability  

#(system defined for 3 components in series) 

 

summary(RSPost) 

sd(RSPost) 

mean(RSPost) 

 

summary(RSPrior) 

sd(RSPrior) 

mean(RSPrior 

 

 

 


